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Purpose of review

Genetic association studies which survey the entire genome have become a common

design for uncovering the genetic basis of common diseases, including lipid-related

traits. Such studies have identified several novel loci which influence blood lipids. The

present review highlights the statistical challenges associated with such large-scale

genetic studies and discusses the available methodological strategies for handling

these issues.

Recent findings

The successful analysis of genome-wide data assayed on commercial genotyping

arrays depends on careful exploration of the data. Unaccounted sample failures,

genotyping errors and population structure can introduce misleading signals that mimic

genuine association. Careful interpretation of useful summary statistics and graphica

data displays can minimize the extent of false associations that need to be followed up in

replication or fine-mapping experiments.

Summary

Recently published genome-wide studies are beginning to yield valuable insights into

the importance of well designed methodological and statistical techniques for sensible

interpretation of the plethora of genetic data generated.
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Introduction
Genome-wide association study (GWAS) is increasingly

common as an experimental design for investigating the

genetic basis of common diseases and complex traits in

humans. Such study designs have been made possible by

extensive databases on human genetic variations [1–3,4��]

and advances in genotyping technologies. The develop-

ment of sophisticated bioinformatics and statistical tools

has also been vital to manage, analyze and interpret the

plethora of genetic and epidemiological data [5–8,9�,

10,11��,12�,13��,14��,15�]. Faced with potentially a million

single nucleotide polymorphisms (SNPs), in which the

true signal of phenotypic association may not be sub-

stantially larger than background noise or confounding

effects, the statistical challenges presented in GWAS

can be significantly different from conventional clinical

trials [16,17]. While traditional issues related to the design

and conduct of an experiment still exist (for example,

sample size calculation, multiple testing, and confound-

ing), the extent of these problems is compounded in

GWAS given the number of variables investigated and
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large sample sizes. This review will discuss the practical

issues related to the design and analysis of data for GWAS,

and provide a brief overview of the range of statistical tools

available for addressing these concerns.

Experimental design
Almost all the recent publications in GWAS have used a

case–control design, which compares a set of unrelated

individuals with the trait of interest against an unaffected

and unrelated set of controls [18–26]. The relative ease of

recruiting a large number of participants for a case–control

study makes it an attractive alternative to family-based

designs, in which adequate recruitment can often be

difficult, especially in the context of late-onset diseases

[27]. Sample dropouts due to genotyping failures, relation-

ship misspecifications and laboratory errors can be more

costly in family-based studies, since the loss of one indi-

vidual may potentially result in the exclusion of an entire

pedigree. McGinnis and colleagues [28] have shown in

earlier work that comparable power is obtained for the

same number of case–control pairs and nuclear trios. This
d.
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means a study design using trios will cost 50% more than a

case–control design for similar statistical power, given the

additional genotyping that has to be performed.

A main disadvantage of case–control study designs is the

vulnerability to confounding caused by undetected or

unaccounted population structure [29–34], which family-

based studies are less susceptible to. Sophisticated

statistical techniques, however, have been successfully

developed to detect and correct for the effects of popu-

lation structure, which will be discussed in greater extent

at a later stage of this review.

One argument in favor of using family-based studies is the

greater ability to detect rare variants compared with case–

control studies. As a family pedigree is recruited when at

least one member of the family is ascertained to possess the

trait of interest, there will be a greater concentration of

disease-predisposing alleles in the pedigree, relative to the

general population. This means there is a higher likelihood

of observing an association between the transmission of a

disease predisposing allele and trait onset. The environ-

mental exposure for members within a pedigree is also

more homogeneous, and this minimizes nongenetic

differences in disease architecture which are attributed

to diet, lifestyle and the environment. Conversely, it can be

difficult to separate nongenetic and genetic causes when

using unrelated individuals due to the heterogeneous

environmental exposure between the participants.
Power and coverage
The ability to identify genetic variants that genuinely

result in phenotypic variations is defined as the power

of the experiment. Optimizing the power without inflating

the rate of false positive discovery (defined as an erroneous

association with the trait of interest) is important when

designing a GWAS, since the number of genetic markers

assayed in a typical GWAS can be over 100 000 and a large

number of putative associations may occur simply by

chance if conventional definition of statistical significance

is used. Even at a seemingly stringent significance

threshold of 0.001, we expect 500 SNPs to be associated

due to chance alone (thus without any biological rele-

vance) when genotyping on a platform which assays

500 000 markers. Bonferroni correction is a common

procedure for guarding against the increased likelihood

of obtaining a significant result due to chance, and is

implemented by dividing the nominal significance

threshold by the number of independent tests performed

to yield a more stringent criterion for assessing each

hypothesis test. This procedure can be overly conservative

in GWAS since the SNPs tested are correlated (cf. linkage

disequilibrium later) and thus the total number of inde-

pendent tests is often less than the number of assayed

SNPs [35]. As the use of overly stringent significance
opyright © Lippincott Williams & Wilkins. Unautho
thresholds requires stronger statistical evidence before a

trait-associated SNP is considered statistically meaningful

(either in terms of a larger effect size, or through the use of

larger sample sizes), the choice of the significance

threshold can thus affect the power of the study. Most

recent studies have adopted statistical significances bet-

ween 10–4 and 10–7 to minimize false associations [13��,

18–26], although the interpretation of SNPs with evidence

stronger than these criteria ranges from ‘moderate’ to

‘strong’ evidence for association [13��].

The coverage of a genotyping platform refers to the extent

of genetic variation in the human genome that has been

represented by the markers on the platform. An untyped

SNP which is strongly correlated (conventionally defined

as a correlation, or linkage disequilibrium, of more than

0.8) with the markers on the platform is therefore defined

to be ‘tagged’. Unless every polymorphic marker in the

genome is documented, current discussion of coverage is

inevitably restricted to evaluating whether the extent of

common genomic variation, as identified by the Inter-

national HapMap Project [3,4��], has been successfully

characterized [36,37��,38�]. An important note, however, is

that different criteria for assessing coverage can yield

dramatically different estimates. For the same platform,

genomic coverage assessed using pairwise tagging strat-

egies [39] will always be lower than multiloci or haplotype

tagging [36,37��], since pairwise tagging only quantifies the

correlation between a focal SNP and one tag SNP, while

multiloci tagging considers the additional correlation

between the alleles at a focal SNP and the haplotypes

from surrounding multiple tag SNPs. For example, the

Affymetrix 500K array has a genomic coverage of 67% and

80% when assessed using pairwise and three-marker

tagging, respectively.

Recent publications have celebrated the success of

genome-wide strategies for categorizing genetic variants

which present unequivocal evidence for trait affiliation.

These studies have mainly been restricted to populations

of European descent. As there is substantially lesser link-

age disequilibrium in African populations than in non-

African populations [3,37��,40�], the coverage provided

by genotyping platforms can vary dramatically when

moving between non-African and African populations

[37��,38�] (e.g. from 60.6% in the HapMap CEU to

37.2% in the HapMap YRI for the Affymetrix 500K chip).

The relation between coverage and power is commonly

misunderstood in genetics, and researchers often mistake

a lack of coverage to be the same as having low power.

GWAS essentially relies on indirect association to

identify regions containing the functional polymorphisms

by testing markers which are in linkage disequilibrium

with the functional polymorphisms rather than testing

the functional polymorphisms directly. This means the
rized reproduction of this article is prohibited.
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ability to detect a true biological association depends

on the extent of linkage disequilibrium between the

genotyped markers and the variants with the true effect.

Current measures of pairwise or multiloci SNP relation-

ships tend to be conservative, and markers not tagged or

represented by conventional definitions may have

complex affiliations with surrounding variants from which

sophisticated methodologies can extract information

[41–44]. This means that a SNP not classified as being

tagged (by conventional definition of pairwise or multiloci

r2 greater than some threshold) may exist on particular

haplotypic backgrounds that allow for accurate inference

of the alleles at the SNP. Sufficient power thus can exist for

detecting a variant which is not in high linkage

disequilibrium with surrounding markers when assessed

using conventional low-dimensional correlation measures.

This was demonstrated in various applications combining

clever use of statistics and available catalogues of common

genetic variants [4��,13��,14��,45�,46], when associations

in untyped regions with low reported coverage were

detected using SNPs on available genotyping platforms.

These techniques impute the genotypes for the untyped

SNPs and provide a tool for in-silico fine mapping, thus

increasing the power to detect and identify regions

containing the causal variant.

Technological advancements can boost statistical power in

a GWAS through careful design of dense genotyping arrays

that prioritizes the selection of highly informative tag

SNPs to improve coverage, while increasing the sample

size of the study is another experimental procedure for

augmenting power [47,48]. The genetic architecture for

common diseases and complex traits is expected to depend

on multiple genetic variants with small effects [16,17].

This necessitates the use of large sample sizes to elucidate

the marginal influence each genetic variant has on the trait.

While sample size calculations are typically performed to

justify grant applications, the truth in this matter is there is

a need to include as many samples as realistically possible

given recruitment and financial constraints. A common

strategy to increase power and authenticate putative

associations is to perform in-silico replication, when data

from several GWASs of the same trait are combined in a

metaanalytic approach [19–21,49]. This pools the infor-

mation from multiple studies, thus increasing the effective

sample size. Variations in the design of the different

studies, however, such as different phenotypic definitions,

population structure and environmental exposure, can

introduce systematic differences throughout the genome-

wide comparisons and these need to be explicitly modeled

to achieve meaningful results in the metaanalyses.

In a strict sense, calculations of power and coverage

should always be made with respect to the underlying

linkage disequilibrium present in the study population

and the genotyping technology used. Dense genotyping
opyright © Lippincott Williams & Wilkins. Unauth
arrays assaying well chosen markers can increase the

number of SNPs with stronger correlations with under-

lying functional polymorphisms, thus increasing the

statistical power in a GWAS. Power is also dependent

on the allelic architecture of the disease, and there is

lower power to identify rare compared with common

variants. Sophisticated statistical methods for haplotypic

analysis and directly imputing the functional polymorph-

isms will be useful to sharpen the weak association

signals, but there is no better substitute than increasing

the sample size when it comes to power considerations.
Genotype calling
Advances in genotyping technology have played a vital

role in making GWAS realistically possible and affordable.

Up to a million genetic variants can now be assayed

simultaneously with predesigned oligonucleotide micro-

arrays designed by either Affymetrix (Santa Clara,

California, USA) or Illumina (San Diego, California,

USA). These microarrays typically assay SNPs although

the recent Affymetrix SNP Array 6.0 and Illumina

Human 1M BeadChip are reported to profile copy num-

ber variants as well. DNA genotyping yields a series of

hybridization intensities which need to be translated into

the actual genotypes, through the process known as

genotype calling.

Traditionally, genotypes were manually determined in the

laboratory by examining fluorescent intensities of allelic

expression. Automated procedures are necessary with the

advent of large-scale genotyping, which assays at least

hundreds of thousands of SNPs. These procedures are

often unsupervised and typically rely on predefined rules

to assign genotypes [13��,15�,50–55]. To account for inter-

sample and batch variability in the extent of reagent

washout and amount of input DNA, the raw hybridization

intensities typically need to be normalized for meaningful

comparisons between samples [13��,15�,52–57]. This

is relevant since recently developed genotype calling

algorithms typically adopt clustering strategies that com-

bine information across different samples at each SNP and

assign genotype calls to entire clusters simultaneously,

compared with earlier strategies [51], which relied on

the intensities for each individual sample at each SNP

and are susceptible to preferentially assign heterozygous

genotypes as missing. Pooling information across all the

individuals to assign genotypes increases the confidence of

the call, since samples with similar intensity profiles are

expected to have the same genotype (see Fig. 1, which

shows a visual representation of the allelic signals for a

collection of individuals at a particular SNP, and such

display is termed a clusterplot). This strategy, however,

implies that the accuracy of the algorithm can depend on

the number of samples within each genotype cluster, and

calling genotypes for a small number of samples or for
orized reproduction of this article is prohibited.
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Figure 1 A clusterplot for 1504 samples at a single nucleotide

polmorphism (SNP)
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The horizontal and vertical axes represent the normalized hybridization
signals for the two possible alleles at a SNP, generically termed as alleles
A and B, respectively. Each point corresponds to the signal profile for a
sample and negative signals are possible for some normalization
methods (for example, that adopted by the Wellcome Trust Case Control
Consortium [13��]). The cluster of points which has a high signal for
allele A but has a near-zero signal for allele B is expected to correspond
to samples with the AA genotype. Conversely, the cluster of points with
high signals for allele B but near-zero signals for allele A is expected to
correspond to samples with the BB genotype. The cluster of points with
almost similar signal profiles for alleles A and B is expected to corre-
spond to samples with the heterozygous AB genotype. The sample
represented by an open triangle has a signal profile that cannot be
unambiguously assigned to one cluster, and well calibrated calling
algorithms will assign a null or missing call to such an outlier. Most
recently developed calling algorithms rely on cluster separation methods
to assign genotype calls.

Table 1 Current genotyping technologies and their respective calli

Platform Programs available

Affymetrix
GeneChip Human Mapping100 K Set DM

BRLMM
GeneChip Human Mapping500 K Set DM

BRLMM
CHIAMO
XTYPING

Genome-wide Human SNP Array 5.0 BRLMM-P
Genome-wide Human SNP Array 6.0 BIRDSEED

Illumina
Sentrix HumanHap300 Genotyping BeadChip GenTrain/GenCall
Sentrix HumanHap550 Genotyping BeadChip ILLUMINUS
Sentrix HumanHap650Y Genotyping BeadChip
Human1M DNA Analysis BeadChip

a Available on the Affymetrix GeneChip Operating Software (GCOS).
b Available on the Affymetrix Genotyping Console Software.
c Available on the Illumina BeadStudio analysis software package from Illum
SNPs with rare alleles can potentially be more prone to

errors (see section ‘Quality control’).

A number of independent software packages for calling

genotypes have been developed for both Affymetrix and

Illumina genotyping arrays. While the purpose of this

article is not to review all the available genotype calling

algorithms, we provide an overview of the software avail-

able and commonly used for the different genotyping

technologies (Table 1). The technology and design for

Affymetrix arrays have seen rapid developments, and

these have necessitated modifications to the calling

algorithms for the different platforms. By comparison,

the technology from Illumina has remained fairly consist-

ent, and thus there has been less modification to the calling

algorithms.

These algorithms typically do not directly assign geno-

types, but instead calculate metrics of confidence for each

of the three possible genotype calls for a sample at every

SNP. Recently developed calling algorithms (for example,

Chiamo [13��], Illuminus [15�] and Xtyping [55]) estimate

the probabilities for each of the three possible genotypes

(AA, AB, BB) given the observed signal data across all the

individuals. The user then defines a threshold for these

probabilities. At a SNP, the most likely genotype is

assigned to a sample if the corresponding probability is

larger than the threshold, otherwise a null or missing

genotype is assigned. Thus the user-defined threshold

can be adjusted according to the desired compromise

between accuracy and call rates. This means the extent

of missing genotypes is dependent on the calling algorithm

and the threshold used, and there is no reason to expect

that the same probability threshold of 0.95 will result in

similar performance across different calling algorithms. As

these probabilities essentially quantify the degree of

uncertainty in making a call, such information can be

incorporated in downstream association analysis averaging

over call uncertainty using missing data likelihood [14��].
rized reproduction of this article is prohibited.

ng algorithms

Developers Available online Reference

Affymetrix Yesa [51]
Affymetrix Yesa [53]
Affymetrix Yesa [51]
Affymetrix Yesa [53]
Marchini et al., WTCCC Yes [13��]
Plagnol et al. Yes [55]
Affymetrix Yesb [54]
Affymetrix Yesb NA, see [54]

Illumina Yesc

Teo et al. Yes [15�]

ina Connect (http://www.illumina.com/IlluminaConnect).
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The choice of the genotype calling algorithm is thus

relevant to the type of downstream analyses that are

possible or necessary.

In summary, the number of statistical approaches for

managing and translating hybridization intensities into

genotype calls is increasing with advancements in geno-

typing technology. As the field moves towards assaying

millions of SNPs across tens of thousands of samples,

computational speed and memory requirements of a

calling algorithm become increasingly relevant in

addition to accuracy and call rates. Ultimately, a genotype

calling algorithm will only be useful if it is accurate with

low rates of missing genotypes, fast and realistically

usable by research groups with limited high-performance

computing resources.
Quality control
Quality control refers to the exploratory procedures used

to evaluate the genotyping performance of the samples

and the genotyping array. As there can be degradation of

input DNA, plating errors and hybridization failures of

genotyping chips, it is important to review the perform-

ance of the samples prior to definitive downstream

analysis with the genotypes. The process of calling

genotypes is not error free, and differential performance

can occur between SNPs. It is thus vital to identify and

exclude SNPs with potentially high rates of missingness

or erroneous genotypes. In this section, we provide a

discussion on the quality control filters that are effective

in minimizing the number of problematic samples and

SNPs in subsequent analyses.

Sample quality control

The extent of missing genotypes and heterozygosity for a

sample are useful indicators for poorly genotyped

samples. Samples with anomalously high rates for either

of these two measures are often excluded from the outset.

High rates of missingness generally imply hybridization

problems, which may be caused by faulty arrays or poor

quality DNA; excess heterozygosity can indicate sample

contamination, resulting in a disproportionate amount of

heterozygous genotypes. It is often useful to represent

missingness and heterozygosity in the same figure to

decide on the filtering threshold (Fig. 2a). Unintentional

use of related samples or accidental sample duplication

can often occur in large-scale studies. Such cryptic

relatedness is easy to infer through measures of allele

sharing given the vast amount of genetic information, and

typically the sample in each relation with the least

amount of missing genotypes is retained in the study.

For family-based studies, further assessment of the

authenticity of the pedigree relationships can be

achieved by calculating the extent of mendelian incon-
opyright © Lippincott Williams & Wilkins. Unauth
sistent genotypes across the genome, and samples that

exhibit clear evidence of relationship misspecifications

may have to be excluded or analyzed separately.

Single nucleotide polymorphism quality control

Quantile–quantile plots compare the obtained test stat-

istics against what is expected under the null hypothesis of

no association, and these are regularly used in SNP quality

assessment. Quantile–quantile plots provide a tool for

visualizing and assessing the extent of systematic deviation

from the distribution under the null hypothesis (cf. geno-

mic control later), and to identify outliers resulting from

genotyping errors or potential association with the trait

(see Fig. 2b). The extent of missing genotypes from well

calibrated calling algorithms has been found to be a good

surrogate for genotyping accuracy and SNP performance

[13��]. Removing SNPs with a greater proportion of miss-

ing genotypes can yield a set of SNPs with accurate

genotype calls for downstream analyses and improve the

overall result of the study (Fig. 2b), since differential rates

of missingness between cases and controls can produce

spurious associations [58]. Genotype calling algorithms

have the potential to make incorrect calls and such errors

can be difficult to detect using the corresponding

confidence metrics, especially when the entire SNP is

poorly called (Fig. 2c). Checking for gross departure to

Hardy–Weinberg equilibrium (HWE) has been shown

to help in identifying SNPs with obvious genotyping

errors [59]. As most clustering-based calling algorithms

tend to perform poorly for SNPs with rare alleles, it

is often useful to exclude SNPs with low minor allele

frequencies (MAFs) from further analyses since they

are generally less informative and current genome-

wide designs are not powered to study such variants

(Fig. 2b).

Genotyping accuracy

In theory, a researcher can attain perfect call rates by

assigning genotypes to the most likely call regardless of

the quality metric. Thus it has become necessary in GWAS

to provide an indication of genotyping accuracy in addition

to reporting the extent of missing genotypes. This can be

achieved by measuring the amount of concordant geno-

types between either sample duplicates or SNPs in perfect

linkage disequilibrium (with pairwise r2¼ 1 in all the

HapMap panels). The latter strategy assumes that SNPs

found in perfect linkage disequilibrium across all four

HapMap panels are almost certain to be in perfect linkage

disequilibrium in the study population.

Clusterplot checking

It is important to check the fidelity of the genotype

assignment for SNPs which exhibit evidence of putative

trait association, since erroneous genotyping can often

introduce unwarranted association signals [58]. When
orized reproduction of this article is prohibited.
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Figure 2 Graphical displays of quality control statistics

(a) A plot of the fraction of missing genotype against the mean heterozygosity for each sample out of 1500 individuals, assessed across 490 032
autosomal single nucleotide polymorphisms (SNPs). The fraction of missing genotype is calculated as the extent of null genotype calls for each
sample out of 490 032 calls, and the mean heterozygosity is calculated as the proportion of heterozygous genotypes out of 490 032. Only samples
with less than 6% missing genotypes (horizontal dotted lines) and mean heterozygosity of between 0.25 and 0.30 (vertical dotted lines) are
included for further analyses. (b) A quantile–quantile plot for the Armitage trend test statistic for the same data, in which observed values greater
than 30 have been scaled to 30 for presentation purposes. Grey circles represent the data before filtering; red circles represent the data after
removing SNPs with over 5% missing genotypes; black circles represent the data after further removing SNPs with Hardy–Weinberg equilibrium
test statistic greater than 28 (approximately corresponding to a P value of 10�7) and minor allele frequency less than 1%. The dotted line indicates
the expected distribution of the test statistic. (c) A clusterplot of a SNP with erroneous genotype calling. The color of each dot represents the
assigned genotype, subject to satisfying the threshold for the confidence metric. Thus erroneous genotypes may occur even at stringent
thresholds. (d) A signal plot across a small region on a chromosome, where the x-axis represents the physical position in megabases, and the y-axis
shows the –log10 P value for the Armitage trend test. Each circle represents a SNP on the genotyping platform, and circles in red represent SNPs
with significances less than 10�5. As genotyping errors can introduce anomalous association signals, a clustering of SNPs with suggestive
evidence of trait association rules out the possibility of false positives attributed to genotyping errors.
the genotypes for case and control cohorts are called

independently, it is possible the genotypes at a SNP may

be correctly assigned for one cohort but erroneously

assigned for the other (Fig. 2c). This can lead to an

overrepresentation of a particular genotype in one cohort

(the heterozygous genotype in our example in Fig. 2c),

thus producing a spuriously large association signal.

Consistently strong signals of association across a collec-
opyright © Lippincott Williams & Wilkins. Unautho
tion of SNPs in close proximity (thus more likely to be in

high linkage disequilibrium) can help to rule out serious

genotyping errors (Fig. 2d), although this may not be

possible in the absence of a series of nearby hits or

when tagging SNPs are used. Visual inspection of the

clusterplot for each trait-associated SNP is still the

recommended strategy for ascertaining the accuracy of

the genotyping [13��].
rized reproduction of this article is prohibited.
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Additional single nucleotide polymorphism-level quality

control

As denser genotyping platforms become available and

increasingly more markers are assayed simultaneously,

there will be a greater reliance on automated procedures

for evaluating the quality of the genotyping. This is

important for downstream analyses such as haplotype

phasing and identifying population structure, and for

comparisons against publicly available datasets with

high-quality genotypes like the HapMap database

[3,4��], since inaccurate genotyping can introduce mis-

leading differences. A number of metrics have been

introduced as part of the procedures for assigning

genotypes and these provide measures of genotyping

quality for the entire SNP in addition to the confidence

measure for the genotype assigned to each sample

[15�,55,60]. As standard quality control criteria typically

rely on extreme behaviors, including gross departures to

HWE, low minor allele frequencies and high rates of

missingness, problematic SNPs which do not present

extreme statistics for these quality control criteria may

not actually be detected. SNP-level metrics, when used

with standard filters, have been shown to be highly
opyright © Lippincott Williams & Wilkins. Unauth

Figure 3 A representation of how differences in genotypic (or allel

signals of association

Cases 

Controls 

Genotype N (%)
  CC          120 (10%)

  CT          240 (20%)

  TT          840 (70%)

Genotype N (%)
  CC          400 (10%)

  CT          800 (20%)

  TT         2800 (70%)

Association 

2 test statistic = 0.0 
P value = 1 

Case

Control

Genotype N

  CC        107

  CT         157

  TT         236

Genotype N

  CC          65

  CT        115

  TT         320

Associatio

2 test statisti
P value < 1.0

Population 1 Comb

In this artificial example with 5000 cases and 5000 controls, samples
frequencies for the three genotypes are identical between the affected a
the case–control data are analyzed within each population. If data from
differences, the resultant case–control data can inflate the test statistic a
here will be to pool the data using metaanalysis procedures (i.e. with a Coc
result.
effective in identifying SNPs with problematic geno-

typing [61].
Population structure
Population structure refers to the genetic differences that

exist between individuals from different groups, popu-

lations or geographical regions. As the effects of population

structure usually result in differences in the allele frequen-

cies of genetic variants between populations, undetected

or unaccounted population structure in an association

study with unrelated individuals has the potential to result

in confounding and biases [11��,32–34,62–69] (Fig. 3).

This is particularly relevant in studies of complex diseases

since the magnitude of association signals from each of

multiple disease genes may be marginal, to the extent that

they are comparable to or even dwarfed by confounding

signals from unaccounted population structure. The

increasing sample sizes recommended for GWAS also

meant that such studies are increasingly susceptible to

confounding from finer levels of population differences.

Assessing the presence of population structure in GWAS

has thus become a permanent feature on the analytical
orized reproduction of this article is prohibited.

ic) frequencies across different populations can introduce false
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 (%)
0 (21.4%)

    0 (31.4%)

    0 (47.2%)
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0 (13%)

0 (23%)

0 (64%)

n 

c = 294.3 
  10−16

Cases 

Controls 

Genotype N (%)
  CC         950 (25%)

  CT        1330 (35%)

  TT        1520 (40%)

Genotype N (%)
  CC          250 (25%)

  CT          350 (35%)

  TT          400 (40%)
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2 test statistic = 0.0 
P value = 1 
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were recruited from two populations. Within each population, the
nd unaffected samples, resulting in no evidence of association when
the two populations were merged without acknowledging population
nd produce a spurious association signal. The appropriate approach

hran–Mantel–Haenszel test), which will correctly yield a nonsignificant
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checklist for GWAS to guard against false positive associ-

ations introduced by population differences.

There are a number of established statistical strategies for

detecting population structure, of which those commonly

used in genome-wide studies include the following:

genomic control, which estimates the degree of inflation

of the test statistic but necessarily assumes that existing

population structure has a uniform influence throughout

the entire genome [30,70] (Fig. 4a); structure, which
opyright © Lippincott Williams & Wilkins. Unautho

Figure 4 Graphical representation of population structure

(a) A quantile–quantile plot of the Armitage trend test statistic for a genome
expected distribution indicated by the dotted line. The estimated genomic con
each single nucleotide polymorphism has been inflated by 21% due to popula
subpopulation membership for each sample. In this example with 235 sampl
the colors blue, green and red) and samples with multiple colors are admixed
variation inferred using the program Eigenstrat for the 269 HapMap samples. T
CEU, while jointly the two axes separate the three HapMap panels.
assumes (and infers) a fixed number of possible ancestral

backgrounds that every sample either partially or wholly

belongs to [5,7] (Fig. 4b); and principal component analysis

with Eigenstrat, which infers informative axes of genetic

variation and locates each sample on this high-dimensional

map of continuous genomic variation [11��] (Fig. 4c).

These strategies typically rely on having a dense set of

trait-independent and unlinked genetic data. As most well

designed genotyping platforms prioritize the use of tagging
rized reproduction of this article is prohibited.

-wide association study in a sample with population structure, with the
trol (GC) inflation factor (l) was 1.21, representing the x2 test statistic for
tion differences. (b) A graphical representation of the structure-assigned

es, structure was run assuming three subpopulations (as represented by
for the respective populations. (c) A plot of the first two axes of genetic
he first axis (x-axis) effectively separates the YRI from the CHBþ JPT and
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SNPs, identifying a set of unlinked SNPs for detecting

population structure is straightforward. For platforms that

do not explicitly rely on tagging SNPs (for example, the

Affymetrix 500 K array), a simple strategy will be to

utilize any SNPs subject to the condition that the inter-

marker distance is greater than 200 kb [3,37��]. In our

experience, thinning the collection of SNPs by using

one in every five consecutive SNPs on the array can

minimize linkage disequilibrium between the SNPs used.

A greater challenge lies in ensuring that SNPs used are

independent of the trait of interest, since assessing

population structure typically happens prior to association

testing, and there is no way to tell a priori whether a SNP is

independent of the trait. One common strategy is to avoid

genomic regions with reported associations (for example,

the major histocompatibility complex region for auto-

immune diseases), although this relies on having com-

prehensive and reliable genetic catalogues of the disease.

We advocate a simple solution to minimize the likelihood

of including associated SNPs: perform a round of associ-

ation analysis assuming no population structure exists,

remove all SNPs with at least marginal evidence of

phenotypic association and use the remaining markers

as the superset for identifying SNPs to use for identifying

population structure.

Common strategies to account for the presence of popu-

lation structure in association studies include the follow-

ing: dividing the test statistic at every SNP by the inflation

factor estimated from genomic control [69]; performing

stratified analyses based on the assigned subpopulation

membership from structure [71,72] at every SNP; and

using the coordinates from the axes of genetic variation

inferred from eigen analysis as covariates in a regression

framework [11��].

While there is ample literature on the validity of these

approaches, the relative merits and shortcomings of each

method need to be reevaluated in the current era of

GWAS. Genomic control requires almost no additional

analysis and is easily implemented after testing for associ-

ations. Assuming population differences exert a uniform

influence across the genome, however, ignores the fact

that the genetic architecture of each individual is a

complicated mosaic from different genetic backgrounds.

Simply dividing the test statistic by an estimated inflation

factor is naı̈ve and potentially misleading. While highly

sophisticated and accurate, the present version of struc-

ture is slow to run on large datasets. This limits the

application of structure in GWAS to small subsets of

SNPs (typically less than 20 000), potentially neglecting

the information from a large fraction of the available data.

Initially designed with GWAS in mind, principal com-

ponent analysis appears to be the preferred method for

handling population structure in large genetic studies.

The approach handles a large number of SNPs across
opyright © Lippincott Williams & Wilkins. Unauth
thousands of samples effortlessly, is relatively fast to

implement, and the use of inferred principal components

as covariates in a regression analysis is both intuitive and

appealing.

As the sample sizes increase in GWAS and denser geno-

typing platforms become available, it is expected that

sophisticated statistical methods will be developed to

detect and handle ever finer levels of population

differences between individuals. One area in need of

methodological development is the management of

population structure in replication studies. These exper-

iments typically assay a handful of putative trait-associated

SNPs on additional samples to verify the detected

associations. It is a challenge to perform accurate inference

of any population structure in the new samples given the

paucity of the available SNP data. While typing additional

ancestry-informative markers in a replication study is a

possible alternative, this is seldom performed for economic

reasons. Well crafted methodological approaches bridging

the inference of population structure for samples in the

main GWAS and subsequent replication experiments will

be useful as these studies are expanded to populations with

diverse genetic backgrounds.
Conclusions
Studies on the genomics of common diseases and complex

traits have successfully uncovered a number of novel trait-

associated genetic variants. This is set to continue as the

genome-wide approach is extended across an ever-increas-

ing spectrum of diseases. While researchers in population

genetics are learning to cope with some of the statistical

challenges in genome-wide studies, there remain a num-

ber of analytical obstacles in the marriage of genetic and

epidemiological data for understanding gene–gene and

gene–environment interactions [73]. These obstacles

need to be surmounted before the complex interplay

between genetic and environmental factors can be fully

understood, thereby truly achieving the full potential of

a GWAS.
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