Background: In Rajasthan, an Indian State with significant salt production, the sale of non-iodized salt for human consumption was banned in 1992. This study explored the relationships between the use of iodized salt in Rajasthan and the iodine status of children and pregnant women living in the area.

Methods: In a State-wide survey, 30 clusters were selected proportionate-to-population-size and 40 school children, 6–12 years old, were enrolled by random house-to-house visits in each cluster. Twelve pregnant women from the same households were also sampled. Salt used for cooking and a casual urine sample from each child and pregnant woman were collected. The salt iodine content was measured by titration and the urinary iodine concentration (UIC) by a quality-assured colorimetric method.

Results: Salt iodine content was ≥15mg/kg in 41.9% of the households, and 23.0% used non-iodized salt. Median UIC was 139µg/L in children and 127µg/L in pregnant women. In households using non-iodized salt, the median UIC’s were 96µg/L and 100µg/L in children and women, respectively. Disaggregating the UIC distributions by salt iodine levels revealed a consistent, step-wise pattern of UIC in children with increasing salt iodine content. A similar but less steep pattern was observed in pregnant women. The iodine status of both children and pregnant women attained the optimal range only when the salt iodine content was close to 30mg/kg.

Conclusion: For optimum iodine status in the population of Rajasthan, the iodization of household salt should be mandated at a higher level than what is practiced at present.

Key Words: universal salt iodization, urinary iodine excretion, iodine, ban on non-iodized salt

INTRODUCTION

After the Heads of State and Government at the World Summit for Children in 1990 pledged to pursue the global goal to eliminate Iodine Deficiency Disorders (IDD), significant progress has been made in many countries to reach this goal through the promotion of universal salt iodization (USI), i.e., the iodization of all salt used for human and animal consumption. Almost 70 percent of the 5 billion people living in countries affected by IDD have access to iodized salt at present. Dietary iodine is required by human beings for the biosynthesis of thyroid hormones, which are essential for normal brain development and function. The fetus and newborn infant are particularly vulnerable to the damaging effects of iodine deficiency.

In an attempt to monitor the progress toward IDD elimination through USI, technical expert groups, convened by ICCIDD, WHO and UNICEF, have recommended population indicators which include the percentage of households using adequately iodized salt (≥ 15mg iodine per kg salt) and the urinary iodine concentration (UIC) in a representative sample of the population. Traditionally, the distribution of UIC among school children was used to assess the extent and severity of iodine deficiency. This practice is increasingly extended, also in surveys, and aims to track the progress made in reaching the IDD elimination goal. In view of the higher iodine requirements of pregnant women and the vulnerability to iodine deficiency during the fetal and newborn period, however, the validity of using the UIC distribution in school children for assessing the progress in IDD elimination remains in question.

IDD continues to blight the health and wellbeing of the population in India. A National Goiter Control

Corresponding Author: Dr Werner Schultink, Chief Child Development & Nutrition, UNICEF India Country Office, 73 Lodi Estate, New Delhi 110 003, India.
Tel: +1 212 326 7324
Email: wschultink@unicef.org
Program was launched as early as 1962. This was re-
named in 1992 as the National IDD Control Program,
while adopting USI as the major strategy to reach IDD
elimination in all the States. Evidence has accumulated
that indicate that IDD is a widespread public health prob-
lem in virtually all the States and Union Territories in
India and, except in Kerala and Gujarat, the sale of non-
iodized salt for human consumption has been banned by
all State legislatures. Also in Rajasthan, one of the three
major salt producing States of India, the sale of non-
ioidized salt was banned from the markets in 1992 upon
finding evidence of iodine deficiency in the population.

The present study was conducted in Rajasthan to assess
the progress being made in IDD elimination through USI,
using the internationally recommended indicators for as-
sessing the iodine status of school children. For a com-
parison of indicators between population subgroups, the
survey design also included assessment of the iodine
status of pregnant women.

SUBJECTS AND METHODS
A cross-sectional, community-based survey was con-
ducted in 2003, based on a population-proportionate-to-
size selection of 30 clusters from the electoral list of all
the villages and urban wards in Rajasthan. Except where
described, methods recommended by an ICCIDD/WHO/
UNICEF expert group were followed. We aimed at at-
taining a precision of ±5% at 50% prevalence, requiring a
sample size of 1,142 at a design effect of 3. Informed
consent was obtained from appropriate authorities in the
State and from each participating individual.

Trained survey teams enrolled participants from 1,200
households, consisting of 40 households in each cluster
chosen in a random staged fashion. Male and female chil-
dren aged from 6 to 12 years were chosen as the index
respondent in random house-to-house visits. If an eligible
child was not resident in a selected household, the nearest
households were visited until a target child was encoun-
tered. When more than one child was found in a given
household, only one child was included at random. When
a pregnant woman was living in the household with an
eligible child, she was also invited to participate. The aim
was to include at least 12 pregnant women in each cluster.
If not enough pregnant women were enrolled in a given
cluster upon completion of 40 households with an eligible
child, additional random sampling of households was
made from the electoral list until the minimum of 12
pregnant women was accomplished. For each additional
household included, the data and sample material of a
previous household with only a child enrolled was dis-
carded at random, thus ending up with data of 1,200
households, 360 of which had woman-child pairs.

Salt samples were collected from the salt used for meal
preparation in the household on the same or previous day
of the survey visit. The salt was packed in an auto-seal
polythene pouch and transported to a central collection
point in the State. One batch of salt samples was lost in
transit. Upon completion of the survey, all salt samples
were sent in one shipment to the Indian Coalition for
Control of Iodine Deficiency Disorders (ICCIDD) refer-
ce laboratory at the Center for Community Medicine
(CCM) in the All India Institute of Medical Sciences
(AIIMS), New Delhi, where the iodine content was as-
sayed by iodometric titration.

A casual urine sample from each child and each preg-
nant woman was collected and preserved in wide mouth
plastic bottles with screw caps. Urine samples were sent
within 24 hours to a central collection point in the State
and refrigerated to prevent bacterial growth. All urine
samples were transported in one shipment to the ICCIDD
reference laboratory in the CCM at AIIMS in New Delhi.
Urinary iodine estimation was done using a micropipette
method. The laboratory participated in the CDC-
organized EQUIP program for external quality control.
The urinary iodine assays were completed within estab-
lished predetermined limits for analytical performance,
and a precision of 4.3% was achieved at the bench control
concentration of 140µg/L.

Data analysis
Experienced data entry specialists carried out data input
into Excel. Data analysis in Excel was enhanced by using
Analyse-It plug-in software for distribution analysis and
calculation of standard non-parametric statistical esti-
mates, and 95% confidence intervals for proportions and
relative risks were calculated with CIA software.

RESULTS
The median iodine content in 1,157 household salt sam-
ple was 10.6mg/kg. Only 41.9% of the salt samples con-
tained ≥15mg/kg iodine and the salt iodine content was

![Figure 1. Frequency distribution of iodine content in household salt, Rajasthan, India](image1)

![Figure 2. Frequency distribution of urinary iodine concentration in school children, Rajasthan, India](image2)
Assessing iodine nutrition in Rajasthan, India

The inter-quartile range of salt iodine content (IQR; 25th to 75th percentile) was 4.2 - 25.6 mg/kg iodine. Figure 1 shows the household salt iodine frequency distribution and the significant skew toward higher salt iodine contents.

Figure 2 shows the frequency distribution of urinary iodine concentrations of the 1,200 children in the survey, with a median UIC of 139 µg/L and IQR 70 - 254 µg/L. Because the distribution of the household salt iodine content indicated that the iodine consumption between children was likely to differ, UIC categories were constructed for comparing children from households with salt iodine contents 0 mg/kg, 0.1-14.9 mg/kg, 15-29.9 mg/kg and ≥30 mg/kg. The UIC distributions in these 4 groups of children are shown in Figure 3 and Table 1. With the stepwise increases in household salt iodine levels, a shift is observed of the child UIC distributions to a higher urinary iodine level (p<0.001). Also, the shape of the child UIC distributions is observed to change with the increase in household salt iodine levels, from a positive skew in children from households using non-iodized salt or salt with low iodine, to the more closely bell-shaped UIC distributions among children from the households with salt iodine ≥15 mg/kg. The median UIC was 96 µg/L in children from households using non-iodized salt and 218 µg/L in children from households using salt with ≥30 mg iodine per kg. The median UIC among children in households having salt with 15-29.9 mg/kg iodine (Group C) was 171 µg/L, which is within the internationally

Table 1. Relationship between household salt iodine levels and child urinary iodine concentration

<table>
<thead>
<tr>
<th>Household salt iodine contents (mg/kg)</th>
<th>Child Urinary Iodine Concentration (µg/L)</th>
<th>N</th>
<th>Median and Inter-Quartile Range</th>
<th>95% Confidence Interval of Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>266</td>
<td>96; 54 – 182</td>
<td>83 – 113*</td>
</tr>
<tr>
<td>0.1 - 14.9</td>
<td></td>
<td>407</td>
<td>114; 57 – 201</td>
<td>103 – 125*</td>
</tr>
<tr>
<td>15 - 29.9</td>
<td></td>
<td>252</td>
<td>171; 88 – 263</td>
<td>146 – 209</td>
</tr>
<tr>
<td>≥ 30</td>
<td></td>
<td>232</td>
<td>232; 129 – 315</td>
<td>199 – 250*</td>
</tr>
</tbody>
</table>

* p<0.001 compared to the group with household salt iodine contents 15-29.9 mg/kg

Figure 3. Urinary iodine distribution in school children disaggregated by iodine content in their household’s salt, Rajasthan, India

Figure 4. Frequency distribution of urinary iodine concentration in pregnant women, Rajasthan, India

0 mg/kg in 23.0% of the households. The inter-quartile range of salt iodine content (IQR; 25th to 75th percentile) was 4.2 - 25.6 mg/kg iodine. Figure 1 shows the household salt iodine frequency distribution and the significant skew toward higher salt iodine contents.

Figure 2 shows the frequency distribution of urinary iodine concentrations of the 1,200 children in the survey, with a median UIC of 139 µg/L and IQR 70 - 254 µg/L. Because the distribution of the household salt iodine content indicated that the iodine consumption between children was likely to differ, UIC categories were constructed for comparing children from households with salt iodine contents 0 mg/kg, 0.1-14.9 mg/kg, 15-29.9 mg/kg and ≥30 mg/kg. The UIC distributions in these 4 groups of children are shown in Figure 3 and Table 1. With the stepwise increases in household salt iodine levels, a shift is observed of the child UIC distributions to a higher urinary iodine level (p<0.001). Also, the shape of the child UIC distributions is observed to change with the increase in household salt iodine levels, from a positive skew in children from households using non-iodized salt or salt with low iodine, to the more closely bell-shaped UIC distributions among children from the households with salt iodine ≥15 mg/kg. The median UIC was 96 µg/L in children from households using non-iodized salt and 218 µg/L in children from households using salt with ≥30 mg iodine per kg. The median UIC among children in households having salt with 15-29.9 mg/kg iodine (Group C) was 171 µg/L, which is within the internationally
recommended range for urinary iodine excretion for school-aged children.

The median urinary iodine among the 360 pregnant women was 127 µg/L, IQR 55 - 230 µg/L. Figure 4 shows their UIC frequency distribution. The UIC among 56% of the women was <150 µg/L and 27% of the UIC values were in the range of 150-300 µg/L. A UIC less than 50 µg/L was observed in 20.9% of the women, and 43.3% of the UIC assays were <100 µg/L. Figure 5 and Table 2 show the UIC distributions of pregnant women in this survey categorized on basis of the same iodine contents categories in their household salt, as was done for the children. Similar to the children, a shift is observed in the locations and shapes of the UIC distributions in women with the increasing iodine levels in household salt. Since the number of pregnant women is small in comparison to children, however, the differences in their median UIC levels did not reach statistical significance. Only by comparing the UIC distributions in women from households with salt iodine content of <15 mg/kg and ≥15 mg/kg was significance approached. The median UIC among pregnant women from households with salt iodine content of <15 mg/kg was 112 µg/L and it was 160 µg/L among the pregnant women with household salt iodine content of ≥15 mg/kg ($p=0.06$).

DISCUSSION

After more than a decade of an official ban on the sale of non-iodized salt in the markets of Rajasthan, the main interest in the present survey was to explore the progress made in the effort to reach USI. Only 41.9% of the households were observed to be using salt with iodine contents of ≥15 mg/kg, a finding that clearly falls short of the agreed-upon target. Nevertheless, the median UIC of 139 µg/L in school-aged children fell in the recommended range for adequate iodine status, which would potentially lead to the conclusion that iodine deficiency in the population of Rajasthan had become a matter of the past. The analysis of the UIC frequency distribution in children, when grouped by the iodine contents in their household’s salt, demonstrates that this would have been an incorrect inference.

The strength of this study was that the salt samples were obtained from the same households where the children and pregnant women were enrolled. This permitted an analysis of the relationships between the consumption of iodized salt, approximated by the salt iodine content in the households, and the iodine status of the population, which in this study is reflected by the urinary iodine concentrations in children and pregnant women living in these households. The findings of a sizable proportion of households using salt with an iodine content of <15 mg and ≥15 mg iodine/kg was significance approached. The median UIC among pregnant women from households with salt iodine

Table 2. Relationship between household salt iodine levels and urinary iodine concentrations in pregnant women

<table>
<thead>
<tr>
<th>Household salt iodine contents (mg/kg)</th>
<th>Urinary Iodine Concentration (µg/L) of pregnant women</th>
<th>N</th>
<th>Median and Inter-Quartile Range</th>
<th>95% Confidence Interval of Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>82</td>
<td>100; 47 – 163</td>
<td>80 – 118</td>
</tr>
<tr>
<td>0.1 - 14.9</td>
<td></td>
<td>126</td>
<td>124; 57 – 208</td>
<td>87 – 150</td>
</tr>
<tr>
<td>15 - 29.9</td>
<td></td>
<td>75</td>
<td>126; 47 – 247</td>
<td>74 – 182</td>
</tr>
<tr>
<td>≥ 30</td>
<td></td>
<td>66</td>
<td>171; 107 – 271</td>
<td>140 – 235</td>
</tr>
</tbody>
</table>

Figure 5. Urinary iodine distribution in pregnant women disaggregated by iodine content in their household’s salt, Rajasthan, India
clearly illustrated that the UIC distributions in the children and pregnant women were not from a single homogeneous population, but constituted of different population sub-groups, including a major category of households in which the progress toward adequate iodine status was significantly lagging behind, in association with their use of non-iodized salt.

The importance of appropriate iodine content in household salt becomes all the more apparent by estimating the relative risks of low (<100µg/L) and high (>300µg/L) child UIC in each salt iodine category, as compared to the children from households using salt with 15-29.9mg/kg iodine (Table 3). Significant stepwise changes (p<0.01) are apparent in the relative risks at each side of the UIC frequency distribution, indicating the significant responsiveness of the urinary iodine excretion in school-aged children to their iodine consumption from household salt. With each 10mg/kg increase in salt iodine content, the UIC among the school-aged children in Rajasthan increased by approx. 30-35µg/L.

The study encompassed 360 pregnant women from the same households where the children were also enrolled. Similarly to children, a stepwise increase in urinary iodine concentration with increasing iodine contents in household salt was observed in pregnant women, although the differences between the groups did not reach statistical significance. This was partly because of the smaller sample size. In households using non-iodized salt, the median UIC in pregnant women was 100µg/L, significantly below the desired minimum for pregnant women of 150µg/L. In households with salt iodine contents ≥30mg/kg, the median UIC among pregnant women was 171µg/L. The two intermediate salt iodine categories had very similar median urinary iodine levels among the pregnant women at 125µg/L. Therefore, it would appear that among the pregnant women in this study, the responsiveness in urinary iodine concentrations to variations in the iodine content of their household’s salt is sizably smaller than in school-aged children. Each 10mg/kg change in salt iodine content was associated with a change in UIC of approx. 15-20µg/L in the pregnant women, about half of that found in the school children.

The dietary iodine intake requirements in a population are closely related to the age and sex-specific group, and pregnant women need additional iodine due to their physiological state. The availability of commercial foods manufactured with iodized salt as part of the recipe is limited in Rajasthan and, therefore, the assurance of an optimum iodine supply in the population through salt iodization depends mostly on the iodine content and the amount of salt used in the households. This study indicated that the iodine status in children from households using salt with 15-29.9mg/kg was within their recommended optimal range, while at the same time, the iodine status in pregnant women living in the same households fell below the desired minimum level. Only when the iodine content in household salt arrived at or near 30mg/kg were both the UIC distributions in children and pregnant women showing levels considered adequate for their groups.

Rationally, the foremost priority for addressing the dietary iodine shortfall in the population of Rajasthan would be to enforce the existing ban on the sale of non-iodized salt in the markets. Removing the households using non-iodized salt from the present database raised the median UIC in pregnant women from 127 to 138µg/L, a sizable improvement but still remaining below the desired minimum and therefore suggesting the need to not only intensify the efforts to reach USI, but also to increase the salt iodization level. The results of this survey illustrate the difficulty of achieving optimum iodine status among all groups in a population when household salt is the single source of additional dietary iodine.

In summary, the results of a population-representative survey in Rajasthan, an Indian State with significant and widespread local salt production, demonstrated the significant shortfall in reaching the USI goal after more than a decade of an official ban on the sale of non-iodized salt. Although the overall urinary iodine excretion among school-aged children suggested that the pre-existing iodine deficiency in the population had been eliminated, UIC distribution analysis disaggregated by the salt iodine contents in households demonstrated that optimum iodine nutrition had not been assured in almost one-third of the population. By also sampling pregnant women in the same households where eligible children were enrolled, it was possible to compare the outcomes of the State’s USI status in each population sub-group. The comparison indicates that in a situation, such as in the Indian State of Rajasthan, where very few households consume foods industrially processed with iodized salt, reliance on an assessment of the UIC distribution in school-aged children only may be grossly misleading. Ensuring optimum iodine status in the population is not simple and straightforward under these circumstances. The present results in Rajasthan indicate the need for not only a more effective effort to reach USI but also a modest increase in the mandated salt iodization level.

Table 3. Relative Risks of low (<100µg/L) and high (>300µg/L) urinary iodine concentrations among children related to the iodine contents in their household’s salt

<table>
<thead>
<tr>
<th>Household salt iodine contents (mg/kg)</th>
<th>N</th>
<th>% Below 100 µg/L</th>
<th>% Above 300µg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>266</td>
<td>52</td>
<td>8</td>
</tr>
<tr>
<td>0.1 - 14.9</td>
<td>407</td>
<td>44</td>
<td>12</td>
</tr>
<tr>
<td>15 - 29.9</td>
<td>252</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>30</td>
<td>232</td>
<td>18</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Child Urinary Iodine Concentration (µg/L)</th>
<th>Relative Risk and 95% Confidence Interval</th>
<th>Relative Risk and 95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 100 µg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.87 (1.48–2.35)</td>
<td>0.45 (0.28–0.73)</td>
<td></td>
</tr>
<tr>
<td>1.59 (1.27–2.00)</td>
<td>0.65 (0.45–0.94)</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above 300µg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65 (0.46–0.91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.55 (1.11–2.15)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AUTHOR DISCLOSURES
Eric-Alain Ategbo, Rajan Sankar, Werner Schultink, Frits van der Haar and Chandrakant S Pandav, no conflicts of interest.

REFERENCES
An assessment of progress toward universal salt iodization in Rajasthan, India, using iodine nutrition indicators in school-aged children and pregnant women from the same households

Eric-Alain Ategbo PhD, Rajan Sankar MD, Werner Schultink PhD, Frits van der Haar PhD and Chandrakant S Pandav MD MSc

1UNICEF Child Development & Nutrition Section, New Delhi, India.
2Global Alliance for Improved Nutrition, New Delhi, India.
3Emory University, Hubert Department of Global Health, Rollins School of Public Health, Atlanta, GA, USA.
4Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, India.

以碘營養指標評估印度拉賈斯坦邦同一家戶的學童與孕婦全面食鹽加碘的進展

背景：拉賈斯坦邦為印度重要的食鹽出產地，在 1992 年開始被禁止販售未加碘食鹽給人食用。本研究探討在拉賈斯坦邦使用加碘食鹽與居住此地區孩童及孕婦的碘狀態之相關性。方法：拉賈斯坦邦全州的調查，依族群大小比例選取 30 個叢集，並從每個叢集中隨機到府拜訪選取 40 名 6-12 歲的孩童。12 名孕婦也選自相同的家戶。收集家戶中使用的烹調用鹽及每名孩童及孕婦的任一時間尿液樣本。使用滴定法及品質保譜比色法分別測量鹽中碘含量及尿中碘濃度(UIC)。結果：有 41.9% 的家庭鹽碘含量 ≥ 15mg/kg，23% 使用未加碘食鹽。孩童的 UIC 中位數為 139µg/L，孕婦為 127µg/L。在使用未加碘食鹽的家戶中，孩童及孕婦的 UIC 中位數分別為 96µg/L 及 100µg/L。UIC 的分佈情形顯示隨著鹽碘含量增加與孩童的 UIC 是呈現一致的逐步模式。孕婦的狀況類似，但較為緩和。孩童及懷孕婦女碘的狀態只有當鹽碘含量接近 30mg/kg 時，才能達到理想的範圍。結論：為使 Rajasthan 的人民能達到理想的碘狀態，應該實施在家戶中的食鹽加比目前更高的碘。

關鍵字：全面食鹽加碘、尿液碘排泄、碘、禁止未加碘食鹽。